Tensorflow

What is Tensorflow?

 is a free and open-source collection of software tools developed by Google for dataflow and differentiable programming across a range of tasks. It is open-source, meaning anyone can use or improve it. Similar projects include Torch and Theano. TensorFlow is one of the best libraries to implement deep learning.

Created by Google, TensorFlow is an open-source library for numerical computation and large-scale machine learning. TensorFlow bundles together a slew of machine learning and deep learning (aka neural networking) models and algorithms and makes them useful by way of a common metaphor. It uses Python to provide a convenient front-end API for building applications with the framework while executing those applications in high-performance C++.

TensorFlow can train and run deep neural networks for handwritten digit classification, image recognition, word embeddings, recurrent neural networks, sequence-to-sequence models for machine translation, natural language processing, and PDE (partial differential equation) based simulations. Best of all, TensorFlow supports production prediction at scale, with the same models used for training.

How It Works

TensorFlow allows developers to create dataflow graphs—structures that describe how data moves through a graph, or a series of processing nodes. Each node in the graph represents a mathematical operation, and each connection or edge between nodes is a multidimensional data array or tensor.

TensorFlow provides all of this for the programmer by way of the Python language. Python is easy to learn and works with and provides convenient ways to express how high-level abstractions can be coupled together. Nodes and tensors in TensorFlow are Python objects, and applications are themselves Python applications.

The actual math operations, however, are not performed in Python. The libraries of transformations that are available through TensorFlow are written as high-performance C++ binaries. Python just directs traffic between the pieces and provides high-level programming abstractions to hook them together.

TensorFlow applications can be run on almost any target that is convenient: a local machine, a cluster in the cloud, iOS and Android devices, CPUs, or GPUs. If you use Google’s own cloud, you can run TensorFlow on Google’s custom TensorFlow Processing Unit (TPU) silicon for further acceleration. The resulting models created by TensorFlow, though, can be deployed on most any device where they will be used to serve predictions.

TensorFlow 2.0, released in October 2019, revamped the framework in many ways based on user feedback, to make it easier to work with (e.g., by using the relatively simple Keras API for model training) and more performant. Distributed training is easier to run thanks to a new API, and support for TensorFlow Lite makes it possible to deploy models on a greater variety of platforms. However, code written for earlier versions of TensorFlow must be rewritten—sometimes only slightly, sometimes significantly—to take maximum advantage of new TensorFlow 2.0 features.

Benefits

The benefit TensorFlow provides for machine learning development is an abstraction. Instead of dealing with the nitty-gritty details of implementing algorithms, or figuring out proper ways to hitch the output of one function to the input of another, the developer can focus on the overall logic of the application. TensorFlow takes care of the details behind the scenes.

It offers additional conveniences for developers who need to debug and gain introspection into TensorFlow apps. The eager execution mode lets you evaluate and modify each graph operation separately and transparently, instead of constructing the entire graph as a single opaque object and evaluating it all at once. The TensorBoard visualization suite lets you inspect and profile the way graphs run by way of an interactive, web-based dashboard.

TensorFlow also gains many advantages from the backing of an A-list commercial outfit in Google. Google has not only fueled the rapid pace of development behind the project but created many significant offerings around TensorFlow that make it easier to deploy and easier to use: the above-mentioned TPU silicon for accelerated performance in Google’s cloud; an online hub for sharing models created with the framework; in-browser and mobile-friendly incarnations of the framework; and much more.

One caveat: Some details of TensorFlow’s implementation make it hard to obtain totally deterministic model-training results for some training jobs. Often a model trained on one system will vary slightly from a model trained on another, even when they are fed the exact same data. The reasons for this are slippery—e.g., how random numbers are needed and where, or certain non-deterministic behaviors when using GPUs). That said, it is possible to work around those issues, and TensorFlow’s team is considering more controls to affect determinism in a workflow.

Conclusion

Is your company in need of help? MV3 Marketing Agency has numerous Marketing experts ready to assist you with AI. Contact MV3 Marketing to jump-start your business.

« Back to Glossary Index